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Variational Data Assimilation of Microwave
Radiobrightness Observations for Land Surface
Hydrology Applications

Rolf H. Reichle, Dennis B. McLaughlin, and Dara Entekhabi

Abstract—Our ability to accurately describe large-scale varia- In this paper, we describe a method for deriving dynami-
tions in soil moisture is severely restricted by process uncertainty cally consistent estimates of the soil moisture profile by as-
and the limited availability of appropriate soil moisture data.  gimjjating remotely sensed passive microwave measurements
Remotely sensed microwave radiobrightness observations can. ¢ land f del. Th . del stat i
cover large scales but have limited resolution and are only indi- In 0_ a lana sur a}ce modael. € primary model sta e; are. sol
rectly related to the hydrologic variables of interest. We describe Moisture and soil temperature and the measured variable is the
a four-dimensional (4-D) variational assimilation algorithm that L-band (1.4 GHz) brightness temperature. The state and mea-
makes best use of available information while accounting for both syrement equations include additive errors, which are assumed
measurement and model uncertainty. The representer method 1 pe random variables with specified statistical properties. The
used here is more efficient than a Kalman filter because it avoids timati b duced to th uti f
explicit propagation of state error covariances. In a synthetic es "_na lon process can be re uce. 0. e_ S.‘o ution or a con-
example, which is based on a field experiment, we demonstrate Strained least-squares problem, which is difficult to solve be-
estimation performance by examining data residuals. Such tests cause the number of unknowns can be very large and the con-
provide a convenient way to check the statistical assumptions of straining model is nonlinear.
the approach and to assess its operational feasibility. Internally — nast 5oil moisture assimilation studies have focused on es-
computed covariances show that the estimation error decreases timati bl ith onl tial tical) di .
with increasing soil moisture. An adjoint analysis reveals that Imation pro gms YV' 0“3{ one §pa ial (vertical) |m§an3|on,
trends in model errors in the soil moisture equation can be €.9., [1]-[5]. Since in one dimension, the state vector is small,
estimated from daily L-band brightness measurements, whereas these studies can apply advanced sequential or variational as-
model errors in the soil and canopy temperature equations cannot similation techniques that account for model errors and error co-
be adequately retrieved from daily data alone. Nonetheless, state 4 rjance propagation. Unfortunately, such advanced methods do
estimates obtained from the assimilation algorithm improve sig- t | Il with the si fth bl R tiv. Hoes
nificantly on prior model predictions derived without assimilation no sga e W? wi e sge 0 .e problem. .ecer? Y, FO gr
of radiobrightness data. al. [6] investigated four-dimensional (4-D) soil moisture assim-
ilation usingin situ and remote sensing observations, but their
assimilation methods neglect model errors and error covariance
propagation. For a detailed review of soil moisture assimilation,
see [7]. Our goal in this paper is to develop a 4-D land data as-

. INTRODUCTION similation algorithm that accounts for model errors and fully

OIL moisture at the land surface is a key variable fdhcorporates process dynamics into the estimates.
SA/eather and climate prediction, flood forecasting, and 4-D variational data assimilation methods have been
the determination of groundwater recharge. Exfiltration aridely used in meteorological and oceanographic applications
infiltration fronts are partially controlled by the state of thd8l-{10], although relatively few of these have accounted for
soil moisture profile. In addition, diurnal variations in landnodel error. The variational approach offers the possibility of
surface fluxes and states are affected by conditions bel@ghieving the accuracy of advanced sequential estimation algo-
the surface. Although soil moisture is of great importance, #hms such as the Kalman filter [11] with the computational
is difficult to monitor routinely, especially over regional orefficiency of suboptimal methods. This is possible because
continental scalesn situ point observations are promematicvariational methods do not explicitly evaluate the large error
for characterizing large-scale variations, and remotely send&yariance matrices which are propagated by Kalman filtering
passive microwave measurements can only be indirectly relafdgorithms. Moreover, variational methods are particularly

to moisture in the 5 cm layer nearest to the surface. well suited for the highly nonlinear soil moisture problem.
Various computational enhancements developed in recent years

have greatly improved the practical potential of variational
Manuscript received June 26, 2000; revised April 27, 2001. This work watata assimilation [12]. These include the indirect iterated
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rithm. Section VI discusses the results of this experiment. In tadditive measurement errors and is defined in terms of its first
final section, we summarize the implications of the synthetic eand second moments. We assume th& zero mean with a
periment and assess the prospects for variational assimilatiorspécified covariance matrix,, of dimensionV; by N .

soil moisture on an operational basis. The data assimilation algorithm is designed to balance the
effects of uncertain model errors, initial condition parameters,
II. VARIATIONAL DATA ASSIMILATION and measurement errors. This is achieved by identifying the

model errors and initial condition parameters which minimize

~ Model predictions and measurements both provide usefylyeighted least-squares (minimum variance Bayesian) objec-
information about the actual state of the soil. The objective @fe function.

our soil moisture data assimilation algorithm is to combine
these two sources of information. The relevant models for the J=(Z-MYN*CH(Z - M[Y))

soil moisture application are based on mass and energy balance T 1 =

equations that describe the temporal and spatial evolution +(ﬁt ﬁ)t s (B=5)

of soil moisture, soil temperature, and canopy temperature. +/ ! / fw(t/)TC—l(t/ ()
These variables may be approximated by a set of spatially o Jo o

discretized time-dependent states defined at the cells of a b p (dY

three-dimensional (3-D) computational grid. + 2/0 A <E — oY) - w) dt. ®)

If all of the spatially discretized states are assembled in a o . o
time-dependentVy--dimensional vectoly' (¢) the hydrologic This objective function minimizes the aggregate error over

model can be expressed as the assimilation interval. The first term accounts for the misfit
between the data vectdf and the measurement predictions
dy MT[Y], normalized by the measurement error covariatice
dr p(Y) +w Yo =Yo(5). @) The second and third terms penalize normalized deviations

] ) ] of the uncertain inputs from specified prior mean values. The
The Ny -dimensional vectow is composed of a set of modelfina| term is obtained by adjoining the state equation to the
errors that are treated as random forcing terms in the state eqy&formance index with the time-dependeé¥it -dimensional
tion. The initial condition is parameterized with a random vectQlagrange multiplier vectoh. This constraint ensures that the
A, which may have a dimension less thaiy. These random state estimates produced by the assimilation procedure satisfy
variables are defined in terms of their first- and second-ordgfe hydrologic model within the range specified by the model
moments. In particular, the specified prior mean valiesnd grror statistics.
A and prior covariances’, and €y summarize our informa-  Estimates of the parameter vectband the model errab(#)
tion about the errors prior to data assimilation. For conveniengge obtained by setting the first variation of the objective func-
we assume that is zero. This assumption could be relaxed ifion (3) equal to zero. This yields a set of so-called Euler-La-

evidence suggested the presence of a systematic bias (nongesage equations, which constitute a two-point boundary value
mean) in the model error. Note that temporal correlations in thgoplem [7]

model errors can lead to a bias in the state even when the model
error itself is unbiased. Deterministic forcings such as observeqry N . N
meteorological inputs are included in the nonlinear operator 7 =p(Y)+& Y=o = Yo(H) (4)

The radiobrightness measurements to be assimilated by the;, A T om|F . )
algorithm can be related to the moisture and temperature states,, =z A+ 57| Dt)C,(Z—-M[Y]) A=, =0
with a nonlinear radiative transfer model. It is convenient to as- v v
semble all brightness temperature measurements available over . T ®)
the temporal “assimilation intervat”e [0, ;] in anVz-dimen- o :/ ! Co(t, NV B =D+ C@% Aico (6)
sional vectoZ. Thekth elementZ;, of Z is the scalar measure- 0 @A = a3 3 T

ment obtained at tim&, over an area centered on locatiop

Next, letmy, (Y (¢:)) denote the true radiobrightness at locatiowheredy /Y anddm/dY are Ny by Ny and Nz by Ny

xy and timet,,, wherem;,(+) is derived from a radiative transfermatrices, respectively. Here and in the following, the estimates
model (Section IV-A). The complete measurement vector cafe denoted with a hat.

then be written as an integral over a set of Dirac delta functionsThe first, or forward, Euler—Lagrange (4) ensures that the es-

that sample the true radiobrightness values at all of the measut@ates obey the state (1). The second, or adjoint (5), describes
ment times and locations the temporal evolution of the adjoint variable (or Lagrange mul-

tiplier) A. This variable is closely related to the model error and
parameter estimates, which are obtained from (6). Note that the
adjoint (5) is forced by differences between measurements and
the corresponding model predictions. This equation is integrated
Here,D(t) is a diagonal matrix of dimensial¥; by Nz with backward in time, starting from a homogeneous terminal condi-
thekth diagonal element equal &t — 5 ). Moreover,n(Y (¢))  tion. The model error estimate is the convolution of the adjoint
andwv are Nz-dimensional vectors wittkth componentsn;,  variable over the model error covarian€g, while the initial

and vy, respectively. The random vectorin (2) accounts for condition parameter estimate is a weighted sum of the adjoint

Z=MY]+v MY]= /0 Y Dymyred. @)
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values at the initial time, with weights derived from the covari- Get prior field YO(t) = Y(t)
ance matrix’z. Once the unknown model errors and parameters from (1) with w=0, B=p
are estimated, the forward equation may be used to derive the
state estimat&” at any time or location. Note that the adjoint n=0
variable contains all of the measurement information needed
to deriv_e the updated est_imatés@, and_Y. These estimate_s can __.[ Linearize around Y™ (t), g1 (7)'(8)J
be obtained without explicit computation of the state estimation l
error covariance matrix. -
Solve linearized Euler-Lagrange
equations:
[ll. THE REPRESENTERALGORITHM o
1. Get background field Y1tky)
The coupled set of nonlinear Euler—Lagrange equations de- from (7) with @ =0, =P
scribed in the previous section must be solved with an iterative 2. fGet fef;esené?rcoefficihems b
numerical algorithm. Although several possibilities are avail- rom (17) (indirect mft od)
able for solving such two-point boundary value problems, we 8. ﬁf;"(%‘;"_(‘ﬁt;ma‘ew ®

have found that the best combination of efficiency and perfor-

mance is provided by the indirect iterated representer algorithm

[12]. This algorithm is particularly efficient because it propa-

gates covariance information implicitly (through the Euler—La-

grange equations) rather than explicitly (with a large covari-

ance matrix). As a result, the method is able to provide statis-

tically optimal estimates without the simplifications that have

been used in other large-scale soil moisture estimation applica-

tions. Fig. 1 summarizes the algorithm. (
In the iterated representer algorithm, the estimates are derived

by solving a sequence of linear estimation problems until Cofig. 1. Flowchart for the indirect iterated representer method.

vergence is achieved. Although there is no proof or guarantee

that this sequence converges, experience has shown that it con- . ,

verges in practice for models that are reasonably close to Ilne\%l? re in (9) we defined

At iteration leveln + 1, we linearize the model and measure-

ment equations around the nominal traject®dry and around b=C,t (Z - M[Y"] - L [YUH - Yn]) g (12)

A7, which are the estimates from the previous iteratjon

Converged?

Posterior covariances
and hypothesis tests

Aside from the facto€ 1, the coefficient vectobis equal to the
posterior data misfit. Note that the linearized Euler—Lagrange

% =p(Y") + g—;ﬁ‘ (Y -Y") 4w equations are coupled through the vedtdthat is,b depends
onY ™t which depends ob). This makes the problem difficult
Ym0 =Yo(8") + 9o (B—B") @) to solve. The idea of the representer.algorithm is to fimude-
3/3 pendently and thus break the coupling of the Euler—Lagrange
Z =M[Y"+ L[Y — Yﬁ] Y equations. Then (9) through (11) could be solved in sequence,
ty om starting with the adjoint equation and progressing through the
L[Y] E/O D(t)-| Y(t)dt. (8) update equations and the linearized state equation giving (in

order) \1t1, mtl gntl gndy 7+,

The linear functionalL[-] can be viewed as the derivative (or The d(_acouplmg qfthelll?hear Etl_JIer;L;?rel\gge equations relies
slope) of the measurement operaddéf-]. The Euler-Lagrange on a series expansion of the estimated helds

equations for the linearized problem are

YT =Y ) + Z b Y(2) (13)

d\Tt 9y T T
— =— 7+l R n+l =
o |, AT 4 ), D(t)b AliZi, =0(9)

' AL =Y Ak (e). (14)
W Tt :/wa(t,t’))\”“(t’)dt’ Z "
0

- Yo n+1 The leading term_of the state representer expansion (13) is the
A =B+ Gz ap |, Alf= (10) background fieIdY"H, which is obtained from (7) using =
Y+l 9 X . = 0andp = A. Note that the background fie_lH"Jrl is
o =p(Y") + W‘ (Y7t — Yy 4 oht an approximation of the prior field”, which is _d_enved from
oy ((jl)f'WItg w (Tz)w =0 a:lno(lj /ih: s. The]\tf 7 coefffrl_0|_en'5[sb;i|:has
n+1 0 +1 efinedin , are called the representer coefficients. The same
Ylizo =Yo(#") + a3, (7 =) (L) coefficients are used in (13) ang (14).




REICHLE et al: VARIATIONAL DATA ASSIMILATION OF MICROWAVE RADIOBRIGHTNESS OBSERVATIONS 1711

The N basis function&* of the expansion, called state repmeasured variables. The computational effort for the state error
resenter functions, are the linearized prior cross-covariances bavariances is simply too large. Moreover, the problem at hand
tween the (scalar) measurement predictibfg}"] and the state is nonlinear and posterior covariances based on the lineariza-
Y[7]. The N functionsA* of (14) are called the adjoint rep-tions (7) and (8) can only approximate the true covariances.
resenters. In each case, the supersérigtands for the number  Sincev = Z — M[Y] is the true measurement error (2), we
of the measurement corresponding to the representer functitefines = M[Y]—M[Y] ~ L[Y —Y] as the (posterior) estima-
in question. Eacir* and each\* is an Ny -dimensional vector tion error of the measurement predictions angt Z — M[Y']
defined ovel0, ¢ ¢]. The representer functions are derived froras the estimate of the measurement error, or equivalently, the
the Euler-Lagrange equations rather than specifigdori. In-  vector of posterior data residuals. The corresponding posterior

serting (13) and (14) into (9), (10), and (11), we obtain covariances are [7], [9]
G 2] T N Cy; =C,(R+C,)'C, Cy=C,—Cs. (18)
a oy |, N Ty | M) Al =0 _ _ .
(15) Recall that the reprgsgnter matfixs the prior covariance ofthe
dr* 9y tr measurement predictions. We can Ggeto normalize the pos-
— :—‘ T+ +/ C(t, YA*(t)at’ terior data residuals and to test whether their distribution is stan-
¢ oY|, 0 dard normal and uncorrelated in space and time (Section VI-B).
L aYy aYy T % This test is particularly powerful when actual data are assimi-
T¥e=o :a—/g . '88—/3 . A%le=o- (16) lated, because it provides a way to check whether the estimator

is operating in accordance with its statistical assumptions. It

Whereas the adjoint (9) is forced with a linear combinatiofust be stressed, however, that this test relies on the lineariza-
of the posterior data misfit (ob), the adjoint representer tions that we have adopted.

(15) is forced with a single impulse, which corresponds to

one measurement time and location and is independent of IV. LAND SURFACE MODEL FORDATA ASSIMILATION

the current estimat&@™”+L, We can therefore solve for the

. . : : . The models that form the basis for soil moisture data assim-
representer fields without knowing the current estimate, which . : : S
. . . . . ilation must capture key physical processes while remaining
is consistent with the interpretation of the representers

. . : . ) €S Sicient enough to make large-scale estimation computation-
prior covariances. Strictly speaking, however, the linearizatiq

around the previous estimai€” implies that the representerarhy feasible. These are potentially conflicting requirements that

! . . must be traded off when a model is selected. For the variational
fields depend on_the data after_th_e first iteration. Note ?"50 t.héa;proach, we also require a numerically well behaved adjoint
the representer fields and coefficients change at each iteration, ST :

) . model. The development of such an adjoint is a time-consuming
The representer expansions enable us to derive a representer I .

. . . 1 task and there are currently no adjoint models available for the
coefficient expression which does not dependot. In- | d land surf h h develoned a h
serting (13) and (14) in (12), we find commonly used land surface schemes. We have eveloped a hy-

' drologic model which meets the requirements of variational data
assimilation. The model is described in [14] and in detail in [7].

— N+l
b=(R+C,)™! (Z - M[Y"] - L [Y - Y”D - (17)  Its most important features are summarized in this section.

The representer matrik;; = Li[Y']with k,l = 1...N,is A. Vertical Moisture and Energy Transport
the (prior) covariance matrix of the measurement predictions

: o . - Our model of coupled moisture and heat transport is a
M, [Y]. Since (17) is n terms of the prior data m|5f|_t, we COUI%oiI—vegetation—atmosphere transfer scheme (SVAT) that relies
now compute the estimates by explicitly calculating the rep-

Bh many of the concepts used in other hydrologic modelin
resenter function&* and the representer matrik and then y P y 9 g

. . . . applications. Vertical soil moisture transport in each pixel is
SO:Y'S%SQ fortt'r:e rip(rjesenter coteff|C|etr1r)1ts'gh|1s_happrp aﬁh 'S governed by Richards’ equation, with soil hydraulic properties
caf et € |re:'[c : e:a;he reFreste:n er rr?'eh OI - [nere dls,thowe Iscribed by relationships from [15]. We use five subsurface
a faster way 1o get the estimates, which aiso avolds the Colq ¢ i the Richards’ equation discretization, located at 0-5
putation and storage of the representer matrix. This techni

; led the indirect iterated ; thod. Rather tHan: 5-15 cm, 15-30 cm, 30-55 cm, and 55-90 cm. The lower
IS called the Indirect iterated representer me ko - ~ather rl?zﬂmdary condition for the soil moisture equation is defined by
computing allV; individual representer field¥”, we calcu-

avity drainage (zero pressure gradient).

) o ; r
late only the linear combinations of representer functions th_%tln order to achieve maximum computational efficiency, ver-

are needed in a conjugate gradient solver of (17). For detaﬂial energy transport in each pixel is described with a one-layer

Zgﬁ gl]_’E[lzl' The computational savings are discussed in S‘ﬁ?r’ce—restore method [16] rather than the full heat equation. This

approach is ideal for our remote sensing application since it fo-
cuses on diurnal soil temperature fluctuations in the upper layer,
which effects microwave radiation. The deep soil temperature
After the iteration has converged, we can opt for calculatirig specified as the seasonal average of the observed air tem-
the posterior covariances of the estimates. For large problemstature. Vertical moisture and heat fluxes through the vegeta-
however, we can at best compute the posterior covariance of tioe layer are modeled with a resistance network approach [17].

A. Posterior Covariances
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At the land surface, we assume near-neutral atmospheric condi- 3
tions. Finally, the brightness temperature is related to the land
surface states with a grey body radiative transfer model [18].
. I ® / omf-
B. Horizontal Variability %hgg;a
In order to be operationally useful, our data assimilation tech- Z 78 Z
nique must consider horizontal as well as vertical variability. ® LLAG75Y,
Fortunately, fluxes and length scales in the vertical and hori- 7
zontal dimensions are much different. This scale disparity can 55
be exploited to improve computational efficiency without any 2 51717, 7
significant sacrifice in accuracy. In particular, we assume that GA5555%% 7
horizontal moisture and heat fluxes in the unsaturated zone are 7 GLLGLIILY: //
negligible. As a result, horizontal variations in our soil mois- o Mesonet Stations Soil Texture
ture estimates reflect spatial correlation in meteorological in- dg‘;"s‘:{"e 777 Sand
puts, land cover, and soil texture rather than lateral transport. Forage N Sand Loam

This assumption is reasonable for terrain with moderate relief B Wheat

over the spatial scales under consideration here (Fig. 2). It en- i 5 oreer
ables us to break the model domain into a grid of one-dimen-

slonal (D) vertial celsor pixels. Our 4D assimilation algogs 7, e 1 Llete SEETEN T e U e i,
rithm accounts for horizontal correlations in the forcing erro esonet stations and the Ian% cover classes and (right) with the soil texture
as well as for unmodeled horizontal fluxes through the mod@hsses (from [14]).

error terms. The assimilation algorithm derives estimates of the
soil moisture in the five layers associated with each pixel a
estimates of the surface soil temperature and canopy temp?z%J
ture of each pixel. u

B8 Silt Loam
A Y Loam
[ | Clay Loam

r experiment extends for eight days from June 27, 1997 to
y 4,1997, which are covered by a single assimilation interval.

Satellite observations of L-band brightness temperatures vﬁ?” moisture estimates are derived at a time step of 30 min.

likely be available only over spatial scales much larger than theThe radiobrighiness meagurements obtaln‘(‘ed fc?’r_o_u_r expert-
gnt are based on synthetically generated “true” initial con-

scales of the meteorological data and other inputs. This requi . )
g P d (EFLon parameterg and time-dependent model error fields

us to downscale from coarse measurements to higher resT dinthe f dmodel (1). whichi ved to ai
tion estimates. Downscaling can be carried out in a straightfor- ese a‘r‘e us”e in the forward model (1), w 'i IS so veatogive
set of “true” system states. Recall that the “prior” state is the

ward manner within the framework of our algorithm [14]. In thi&

paper, we limit ourselves to estimating land surface states at ﬁ;l)éutlon t(_) (1)_when the |n|t|_al co_nd|t|on3 and mod_el errors are
scale of the brightness observations. set to their prior values. This prior state can be viewed as the

“best guess” of the true states available without the benefit of
radiobrightness measurements. Fig. 3 shows the true and prior
top node saturation for our experiment at four times during the
In the following sections, we investigate the performance @ssimilation interval. We define soil saturation to vary between
our assimilation algorithm using an experiment based on sy#ero and one.
thetically generated radiobrightness data. Synthetic experiment¥he “true” brightness temperatures are obtained by using
are ideally suited for algorithm performance tests since all of thige “true” states as inputs to the radiative transfer model. The
uncertain inputs are known by design. In particular, synthetector Z of synthetic brightness measurements is obtained by
experiments allow us to isolate the effects of the nonlinearitiagdlding random measurement errors to the output of this model.
in the hydrological model on the quality of the estimates. Su@ynthetic brightness measurements are generated once daily
experiments are an indispensable first step toward a field apgli-every pixel in the model domain at 10:00 AM local time,
cation, although they clearly cannot replace tests based on‘abich is typical of the SGP97 field experiment. This yields
tual observations. Recognizing these limitations, it is useful s&ven images and a total &f; = 7 - 16 - 32 = 3584 scalar
examine the results from well-controlled synthetic experimentmeasurements. The assimilation algorithm estimates the land
The synthetic test problem considered in this paper is basstiface states from the noisy dédfaand the prior solution.
on the Southern Great Plains (SGP97) hydrology experiment inThe spatial and temporal correlation functions of the uncer-
Central Oklahoma [19]. The 80 km 160 km area chosen for tain inputs that are needed for the generation of the synthetic
the synthetic experiment is shown in Fig. 2. We divide this ar¢iaue fields and for the estimation algorithm depend on the given
into 16 by 32 pixels of 5 kmx 5 km. Soil temperature and soilmodel and field setting. These statistics are very difficult to de-
moisture are estimated in each of these 512 pixels. Fig. 2 ateomine, and their characterization is beyond the scope of this
displays land cover data (from the SGP97 Data Archive) apéper. Here, we only aim to prove the concept of soil moisture
soil texture data (from the Earth System Science Center, Peassimilation with synthetic experiments. This does not critically
sylvania State University, State College). The meteorological idepend on the exact shapes and scales of the correlation func-
puts are taken from the Oklahoma Mesonet database and intems, and we specify conditions that in our experience are ap-
polated to the model grid with inverse-square distance weigtipsopriate for the experiment area and our model.

V. A SYNTHETIC EXPERIMENT
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&

i) [k = ] 3¢ firm]

Fig. 3. First row shows the true top node saturation on four days at 10:00 AM. The second and third rows show the prior and the estimated top nade saturatio
at the same times, respectively.

The initial conditions and model errors generated in owquations. Each of these errors is zero mean and has a standard
synthetic experiment are zero-mean normally distributatkviation equivalent to 50 W nif. The model error correlation
random fields with exponential spatial and temporal correlatid@engths are all 6 km, and their correlation times are all 10 h. The
functions. The only uncertain initial condition parameter in eaglandom measurement errors added to the brightness temperature
pixel is the total initial water storage across the modeled profilealues are spatially and temporally uncorrelated with a standard
The initial saturation profile is related to this parameter througteviation of 5 K. The absence of spatial correlation of the mea-

a shape function which can be specified arbitrarily. Here we userement error is not a constraint imposed by the algorithm but
a hydrostatic shape. In an operational setting, the shape couldda simplification adopted for convenience.

derived from the estimated profile at the final time of a preceding

assimilation interval. The standard deviation of the initial top VI. RESULTS AND DISCUSSION

node saturation is 0.12 and the correlation length is 50 km. The | . )

initial upper layer soil temperature is set equal to the initial ait- SCil Moisture Estimates

temperature and is assumed to be known perfectly (its memoryVe begin the discussion of our synthetic data assimilation ex-
is only a few hours and has little impact on the estimates).  periment with a review of the soil moisture saturation estimates

Model errors are represented as unknown fluxes in the nepreduced by the algorithm. Fig. 3 shows the true, the prior,
surface soil moisture, soil energy, and canopy energy balaraoal the estimated top node saturation at four times during the



1714 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 8, AUGUST 2001

one-week assimilation interval. The temporal evolution of th % ' ‘ ‘ ’ ’ '

prior

top node saturation is governed by the initial condition (whicl 15 observations

estimates

tends to persist during drydown periods), precipitation, soil te
ture, and land cover. The value of the observations for retrievir
the true soil moisture is obvious. In the absence of brightne
data, our best guess for the top node saturation is the prior so
tion shown in the middle row of Fig. 3, which is quite far from
the true saturation. Once we assimilate the brightness data,
are able to accurately estimate the initial condition and the ev
lution of the top node soil moisture. 0 L v

The profile estimates obtained from this particular synthetic June28  June29  June30 vt vz 3
experiment are as good as the surface estimates (not shownjidns. - upper panel shows the area-average error standard deviation of the
practice, the feasibility of retrieving subsurface moisture prorightness temperature(T’z ). Each group of bars refers to one observation
files from surface measurements depends on the accuracya@?éwhich is indicated with vertical dotted lines in the lower panel. The first

. . ._bar pf each group (light gray) show$1's ) of the prior solution, the second bar

the physical realism of the land surface model and the associ gray) shows(T's) of the observations, and the third bar (black) shows
error statistics. Since the subsurface states cannot be remotélis) of the estimates. The lower panel shows a time series of the area-average
sensed at the pixel scale they can only be estimated by ushfgPitation.
the hydrologic model to propagate information downward from
the surface. The time required for such propagation is signifi-
cantly longer than the length of a single assimilation interval.
This implies that we need to conduct a multi-interval test over  gpger- | Mean with | K-S test for | Variance with
several months before we can fully demonstrate the feasibility
of estimating subsurface profiles from surface measurements.

o(Ty) K]
5

50

P [mm/day]

TABLE |
STATISTICS OF THENORMALIZED POSTERIORDATA RESIDUALS

vation | 95% confidence | N(0,1) 95% confidence

Such a test requires a procedure for reinitializing multiple in- time | interval [-] | ata=.05 interval [-]
tervals. Reinitialization is beyond the scope of this paper but is 1 0.012:£0.087 accept | 1.004 [0.89,1.14]
discussed in [14].
[14] 2 0.02620.086 accept | 0.990 {0.88,1.12]

B. Posterior Covariances and Data Residuals 3 -0.012+0.089 accept | 1.039 [0.92,1.18)

In our synthetic experiment, we can assess the accuracy of the 4 -0.039+40.088 accept | 1.019  [0.90,1.16]
estlmatgs producgd by the data aSS|m|I§1t|on algorithm simply by 5 0.07340.087 reject | 1.005 [0.89,1.14]
comparing the estimates to the synthetic true values, as we have
done in Fig. 3. In practice, we do not know the true statesandwe ~ __8 -0.0970.086 accept | 0.975 [0.87,1.11]
must assess performance in other ways. One of the best options 7 -0.0740.087 accept | 1.004 [0.89,1.14]
for the soil moisture application is to examine the differences all 0.0374£0.033 reject | 1,005 [0.96,1.05]

between measured and estimated radiobrightness values. These
are the posterior data residudls= Z — M[Y] discussed in
Section llI-A. For the performance analysis, it is convenient e achieve an estimation error standard deviation of about 2.5
construct a set of normalized posterior data residﬁglﬁﬁz?. If K, which is relatively homogeneous across the domain.

the estimation problem were linear, these normalized posterioin Fig. 4, we can also see the influence of precipitation events
residuals would have a unit normal distributidh(0, 1) (since on the uncertainty in the brightness estimates (and hence in soll
all input errors are normally distributed), and they would be spearoisture). The prior and posterior error standard deviations de-
tially and temporally uncorrelated. If the normalized residuatyease after the rain event and then slowly increase again as the
satisfy these properties at least approximately for our nonlinesoil dries out. Generally, we find that the estimation error stan-
problem, when all covariances are based on linearizations abdatd deviation decreases with increasing soil moisture. In other
the final estimate, we can assume with reasonable confidemagrds, precipitation events tend to wipe out the memory of the
that the estimation process is near-optimal. system, including the effect of model errors.

Before we can normalize the posterior residuals, we mustWe can now turn to the discussion of the posterior data resid-
compute the theoretical prior and posterior covariances of thals¢. Although their covarianc€’; is not strictly diagonal,
brightness temperature at the measurement times and locatibisvery diagonally dominant. For reasons of nhumerical accu-
(Section 111-A). Fig. 4 shows the theoretical area-average estacy (the computed’; is not perfectly symmetric), we neglect
mation error standard deviation for each of the seven synthetif-diagonal elements of’;, and simply normalize the poste-
brightness images before and after assimilation, derived onrior residuals with their theoretical standard deviation. Table |
andCj, respectively (we define the area-average standard desttows sample mean values and variances of the normalized pos-
ation as the square root of the area-average variance). The spaer data residuals for each radiobrightness image, together
tial and temporal average of the prior error standard deviationvigth 95% confidence intervals. We find that the sample means
about 16 K, with variations from a few K up to 40 K withinfor six of the seven residual images are compatible with the zero
an image. When we assimilate the brightness images, whitlean hypothesis at a 5% significance level. For the sixth image
have a constant measurement error standard deviation of 5aKkd the sample of all residuals, the 95% confidence interval does
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TABLE I parent from (6), which indicates that the model error estimate
OBJECTIVE FUNCTION AND NUMBER OF MODEL INTEGRATIONS is the convolution of the adjoint with the model error covari-
. . ance, and the parameter estimate is a weighted sum of the ele-
Iteration prior 1 2 3 4 .. N
ments of the adjoint vector at the initial time. If the model errors
Objective (J) [] || 25,098 | 3,424 | 3,394 | 3,461 | 3,485 were uncorrelated in time and space, the model error estimate
Model integrations —| 603| 191 243| 163 for each component of the state equation would be equal to the

corresponding adjoint variable. In our soil moisture application,
however, temporal and spatial correlations are important since
not include zero and we have a slight overall negative bias.tey account for persistence of uncertain inputs such as errors
Kolmogorov-Smirnov [20] test indicates that the hypothesis ¢4 precipitation and soil parameters.
a standard normal distribution cannot be rejected at a 5% Sigan examination of the adjoint values obtained from our syn-
nificance level for six of the seven images (Table I). The NOfetic experiment provides some insight into the relationship be-
mality hypothesis is rejected for the fifth image as well as fQgyeen the adjoint variables and the model error. Fig. 5 compares
the sample of all residuals. Finally, the sample variance of glhe series of the soil moisture and soil temperature adjoint vari-
normalized posterior residuals is statistically indistinguishablgyes in a representative pixel with brightness temperature mea-
from one. _ _ _ surements and estimates in the same pixel. The soil moisture
If we plot the normalized posterior residuals (not shown), Weyigint variables are provided at several different depths. The
find that they exhibit very little structure in either time or SPac&prupt changes in the surface values of the adjoint variables ob-
confirming the theoreti.cal_ pre_dictio_n thgt they should belnea@érved as time progresses backward reflect the forcing of the
uncorrelated. A quantitative investigation of the two-point ay55ckward (adjoint) (5) with impulses at the observation times.
tocorrelation function corroborates this result. In summary, thg,q weights of these impulses are proportional to the misfits be-
normalized posterior data residuals do not fulfill all the criterigyeen the observed and the estimated brightness temperatures
associated with an optimal linear estimator but they share magyy 1o the sensitivity derivative of the brightness temperature
of the same qualitative features. Given the nonlinearities ijith respect to the state vector. The magnitude of the adjoint in-
volved in the assimilation, there is no reason to expect the postesases rapidly (moving backward in time) when the effects of
rior residuals to be either strictly normal or uncorrelated. HOW; hew measurement are felt and then gradually decays as these
ever, the general symmetry of the probability distribution angkects are dampened by the model dynamics.
the_weak gorrelgtion of the pgsterior residuals suggest that thel’he brightness temperature depends directly on the satura-
estimator is acting nearly optimally. tion in the top two nodes (at 0 cm and 5 cm) via the top layer
microwave emissivity and the heat capacity. Consequently, the
brightness temperature data misfit has an instantaneous effect
The value of the objective function (3) provides anothejn the surface soil moisture adjoint variable. Since saturation
useful indicator of estimator performance. If the assumegilues in the lower layers do not directly influence the bright-
statistical properties of the measurement, model, and paramei@ss temperature, the soil moisture, adjoint variables for these
errors are correct this objective should be approximatelyyers change more gradually, reflecting the delayed propaga-
x*-distributed with a mean of = N; and a standard deviationtion of information downward from the surface. The soil mois-
of o7 = V2Nz [9]. For our test problem the theoretical valuesure at all depths has a longer memory than the soil temperature,
areJ = 3584 ando; = 85. Table Il shows the prior and which decays (backward) to zero within 12 h after a measure-
reduced values of the objective as a function of the iteration. fent.
the first iteration, the objective function decreases significantly Fig. 6 plots estimated, prior, and true model error time series
from its prior value of 25098 to 3424. But the objectivgor the same pixel considered in Fig. 5. Note that the prior (or
function value does not continue to decrease monotonically, M&an) model error is zero by convention. The upper panel shows
it would in a steepest descent search. This is because in I3 model error for the moisture flux upper boundary condition
iterations changes in the objective reflect adjustments neeggsk forcing term of the soil moisture balance equation). While
to satisfy the nonlinear state equation, which is imposed ash true model error correlation time is 10 h, we only assimilate
constraint but may be violated in the earlier iterations. Thegﬁghtness updates once per day so the model error estimate is
adjustments sometimes actually increase the objective functigstessarily much smoother than the true time series. Neverthe-
value. The converged objective function value.bf= 3485 |ess, the estimate tends to track the general trend of the actual
compares well with the expected value.bf= 3584, lying just  model error.
over one standard deviation away. Since the Objective fUnCtionThe second pane| of F|g 6 shows model errors in the soil tem-
can be evaluated at negligible cost in the representer algoritR@rature equation (forcing term for the soil energy balance). The
[9], this is an important validation step when actual data aggtimate of the soil temperature model error is somewhat poorer

C. Reduced Objective Function

assimilated. than the estimate of the soil moisture model error. This obser-
o , vation applies generally, across the model domain. The third
D. Model Error and Adjoint Variables panel shows the model error in the canopy temperature equa-

The adjoint variable\ plays a key role in our variational as-tion (forcing term for the canopy energy balance). Apparently,
similation algorithm since it relates the model error and initialle have no skill in estimating this error. The poor estimates ob-
condition parameter estimates to the measurements. This istapied for the soil and canopy temperatures reflect the fact that
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Fig. 5. Top panel shows the estimated brightness temperature forFiQ- 6. ‘Model error (top) in the moisture flux upper boundary condition,
representative pixel along with the (synthetic) observations. For reference, §fdd!e) in the soil energey balance, and (bottom) in the canopy energy balance
prior and the true brightness are also shown. The second and third panels skt representative pixel (the same as Fig. 5).

the adjoint soil moisture for the upper and lower three nodes, respectively. The

bottom panel shows the adjoint soil temperature. the conjugate gradient solver of (17). Table Il shows the number
of model integrations for each iteration of our synthetic test
daily L-band brightness images contain little or no informatioproblem. For our example, the computational burden of the in-
on soil and canopy temperature at the 30 min scale. We are afjilect iterated representer method is one order of magnitude
to estimate the soil moisture model error because soil moistygs than that of the direct method. This efficiency has an in-
has a longer memory than the soil or canopy temperatures. Tfigive physical interpretation. Obviously, the horizontal corre-
is evident from the adjoint variable plots of Fig. 5. lations present in the initial condition and model errors imply
that there are many fewer degrees of freedom in the brightness
images than there are scalar data. Through its design, the indi-
The computational burden for advanced data assimilationriect method effectively compresses the data.
operational land surface applications is formidable. This reflectsFor operational applications, it is important to understand
the large horizontal extent of the model domain, the need foow computational requirements scale as we increase the size of
high resolutionin time, the large number of remote sensing mehe problem. Since the model is composed of a collection of in-
surements to be assimilated, and the nonlinear nature of the stitpendent vertical columns, the computational requirements for
and measurement equations. It is useful to review some of tr&ch model integration scale with the number of pix€éls(for
factors which affect the computational time. Such a review pra-constant number of layers in the vertical). We have found that
vides some insight about the limitations of current data assintite number of model integrations required in the indirect iter-
lation methodology and suggests where improvements are matstd representer method is mostly determined by the number of
needed. scalar data being assimilated [7]. Therefore, the computational
In the representer method, the bulk of the computational &fffort scales roughly with the product of the number of measure-
fort is spent on model integrations. If we count the forward andents and the number of pixetéz N, Ng.
backward integrations separately and equally, the integrationThe memory requirements for the assimilation algorithm are
count for the direct iterated representer methd@i¥; +3) = substantial and scale with the length of the assimilation interval
7171 model integrations per iteration [9]. For the indirect iterand the size of the grid. Ideally, all variables should be kept in
ated representer method, the integration count depends onrtiemory during the assimilation to keep the cost of input/output
number of linear combinations of representer fields neededdperations low. In addition to the model inputs we have to store

E. Computational Effort
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the state trajectory over the entire inter{@l¢ /], and we need sight provided by the adjoint variables is the time lag inherent
to store the estimates of the model error oet ;]. in propagating information from the surface down the soil pro-

Finally, we briefly compare the computational requiremenfge.
of the indirect iterated representer technique, the gradient-deTheoretical error covariances indicate that uncertainty in
scent (“adjoint”) method [9], the extended Kalman filter (EKFprightness temperature estimates (and therefore in soil moisture
[11], the ensemble Kalman filter (EnKF) [21], and error subestimates) decreases with increasing soil moisture. At one
space statistical estimation (ESSE) [22]. Of these techniquestreme, we know that surface soil moisture is guaranteed to
the representer method, the gradient-descent approach, andthelose to saturation after a significant rainstorm. As precip-
EKEF fully account for the temporal propagation of uncertaintytation inputs decrease and the effects of drydown dominate,
The EnKF and ESSE approximate the dynamic evolution of thacertainty gradually increases. If drydown persists for a long
error covariances. Our comparison is based on an approximit@e, soil moisture approaches residual saturation and the
count of floating point operations rather than actual computancertainty decreases again.
tional experience (see [7], [22] for details). Much more work is necessary before soil moisture data

The EKF explicitly propagates the state error covariance massimilation becomes practical in an operational setting. Ob-
trices (o Nﬁ) and cannot be used for 4-D large-scale soil moisdous future research directions are a test of the algorithm with
ture assimilation unless all horizontal correlations are neglectéiéld data (for example, ESTAR radiobrightness observations
Likewise, the adjoint-based gradient-descent method is not featlected during SGP97 [19]), and the assimilation of additional
sible if model errors are included because the number of dgpes of measurements. Moreover, operational applications
grees of freedom increases in direct proportion to the numbequire a scheme for reinitializing subsequent assimilation
of time steps. From a computational point of view, the indireghtervals. Since the necessary posterior state covariances are
representer technique is competitive with approximate sequéne expensive to compute in practice, this must be done in an
tial methods like the EnKF and ESSE, which scale wWihV,,, approximate fashion. Preliminary results are encouraging [14].
whereXN, is the number of ensemble members. It is not yet well In spite of the substantial gains in computational efficiency
understood how many ensemble members are required, butpmevided by the indirect iterated representer method, the com-
expectV, to scale withV,, the size of the domain. In this caseputational effort is tremendous. Of particular concern is the fact
the indirect representer and Monte Carlo methods appear tothat the computational load scales with the number of observa-
competitive, both requiring on the order 8 model integra- tions that are assimilated. We believe that operational applica-
tions for large problems. For comparable effort, the great advaions must rely on parallel computing, which is quite compatible
tage of the representer technique lies with the near-optimalitywith the multicolumn structure of the hydrologic model used in
the estimates, while the sequential Monte Carlo methods mayr soil moisture application. Even if the computational limita-
be a better choice if posterior state covariance information is téns turn out to be prohibitive for operational applications in the
quired. near future, the proposed algorithm provides a valuable bench-
mark against which computationally more efficient algorithms
that do not account for error covariance propagation can be eval-
uated.

In this article, we have described a variational method which
accounts for process dynamics and model errors and is suitable
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